Intrinsic Laminar Lattice Connections

نویسندگان

  • KATHLEEN S. ROCKLAND
  • JENNIFER S. LUND
چکیده

Intracortical injections of horseradish peroxidase (HRP) reveal a system of periodically organized intrinsic connections in primate striate cortex. In layers 2 and 3 these connections form a reticular or latticelike pattern, extending for about 1.5-2.0 mm around an injection. This connectional lattice is composed of HRP-labeled walls (350-450 pm apart in Saimin' and about 500-600 pm in macaque) surrounding unlabeled central lacunae. Within the lattice walls there are regularly arranged punctate loci of particularly dense HRP label, appearing as isolated patches as the lattice wall labeling thins further from the injection site. Aperiodic organization has also been demonstrated for the intrinsic connections in layer 4B, which are apparently in register with the supragranular periodicities, although separated from these by a thin unlabeled region. The 4B lattice is particularly prominent in squirrel monkey, extending for 2-3 mm from an injection. In both layers, these intrinsic connections are demonstrated by orthogradely and retrogradely transported HRP and seem to reflect a system of neurons with long horizontal axon collaterals, presumably with arborizations at regularly spaced intervals. The intrinsic connectional lattice in layers 2 and 3 resembles the repetitive array of cytochrome oxidase activity in these layers; but despite similarities of dimension and pattern, the two systems do not appear identical. In primate, as previously described in tree shrews (Rockland et al., '82), the HRP-labeled anatomical connections resemble the pattern of 2-deoxyglucose accumulation resulting from stimulation with oriented lines, although the functional importance of these connections remains obscure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey.

Cortical connections within the occipital lobe (areas 17, 18 and 19) of the rhesus monkey are investigated with the autoradiographic and horseradish peroxidase procedures. Two efferent systems, each with a specific laminar organization, are observed. (1) Rostrally directed connections, from area 17 to 18, area 18 to 19 and area 19 to the inferotemporal region (area TE), originate from neurons i...

متن کامل

Perirhinal and parahippocampal cortices of the macaque monkey: Intrinsic projections and interconnections.

We investigated the topographic and laminar organization of the intrinsic projections and interconnections of the macaque monkey perirhinal and parahippocampal cortices. Discrete anterograde tracer injections placed at various rostrocaudal and mediolateral levels in these cortices revealed extensive associational connections both within and between the perirhinal and parahippocampal cortices. A...

متن کامل

Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types t...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus.

The development of the cerebral cortex involves the specification of intrinsic circuitry and extrinsic connections, the pattern of inputs and outputs. To investigate the development of a major afferent input to the cortex, we studied the formation of thalamocortical connections in an organotypic culture system. Slices from the lateral thalamus of young rats were cocultured with slices from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004